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LETTER TO THE EDITOR 

Storage capacity for hierarchically correlated patterns 

A Engel 
Sektion Physik der Humboldt-Universitat, Bereich 04 Invalidenstrasse 42, Berlin, 1040, 
German Democratic Republic 

Received 25 July 1989 

Abstract. The storage capacity of a Hopfield model with patterns forming a two-level 
hierarchy is calculated without reference to a special learning rule. If the number of 
different classes becomes very large strong correlations within the classes decrease the 
storage capacity in striking contrast to what is known about one-level hierarchies, i.e. 
patterns with magnetisation. 

Large networks of N two-state neurons can function as associative memories (Hopfield 
1982) and have raised a lot of interest in the statistical physics community (van Hemmen 
and Morgenstern 1987). In particular it has been shown for different statistics of the 
patterns and several learning rules that one can store at most p = O( N )  patterns for 
N + a  (Amit et al 1985, 1987, Kanter and Sompolinsky 1987, van Hemmen 1987, 
Gardner 1988), which is rather modest since these systems are known to possess 
O(exp(aN)) metastable states (Gardner 1986). One of the most exciting problems in 
this context concerns hierarchies of patterns. By this we have in mind the properties 
of a homogeneous network storing hierarchically correlated patterns (Parga and 
Virasoro 1986, Toulouse et a1 1986, Feigelman and Ioffe 1987, Cortes et al 1987, Bos 
et a1 1988), a situation rather different from that of hierarchically structured networks 
(Dotsenko 1985, 1986, Gutfreund 1988, Sourlas 1988). Hierarchies of patterns are 
interesting on the one hand because the brain is known to classify the data to be stored 
(Simon 1962, Parga and Virasoro 1986, Virasoro 1988) and on the other hand since 
an ultrametric organisation of the low-energy states occurs spontaneously in randomly 
connected networks (MCzard er a1 1984). So far the storage capacity for hierarchically 
correlated patterns has been discussed using special learning rules only (Parga and 
Virasoro 1986, Feigelman and Ioffe 1987, Cortes et al 1987, Bos et a1 1988). The results 
are again p = O ( N ) ;  however, it remains unclear whether this is due to the statistics 
of the patterns or the learning rule implemented. 

In this letter we determine the critical storage capacity for correlated random 
patterns forming a two-level hierarchy without reference to a special learning rule. 
This is done by calculating the partial volume (( V)) in the phase space of interactions 
which contains those combinations of couplings .Iij that stabilise all the patterns. This 
rather powerful approach was introduced recently by Elizabeth Gardner (Gardner 
1988). The application of this method to hierarchically correlated patterns has also 
been suggested by Virasoro (19881, who considered a special type of two-level hierarchy. 
Here we are concerned with the most general form of a regular hierarchy with two 
levels; in particular we consider the case of infinitely many classes containing a finite 
number of patterns. The patterns to be stored are defined by 

( l a )  g = ~ y . ~ ' g % P  
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where the & i r ) +  are independent random variables with distribution 

and p ' = [ p / z o ]  denotes the largest integer smaller than p / z o .  zo and zl are the 
branching ratios at the zeroth and the first level respectively, hence p ' =  1 , .  . . , zl,  
p = 1 , .  . . , ZOZI.  

The central quantity to be calculated is the nth power of the partial volume V 
averaged over the statistics (1)  of the patterns in the limits N + 03, n + 0. The starting 
expression is the same as in Gardner's case (Gardner 1988): 

The 8 functions make J; = O( 1) whereas the product of the &functions ensures the 
stability of the patterns to be stored. The disorder-independent part can be handled 
completely in the same way as for uncorrelated patterns (Gardner 1988).  Introducing 
integral representations of the @-functions we find for the remaining part 

Using (1) we first average over the &jo)'w and after introducing the variables qaP and 
A;- defined by the &functions below we get to leading order in N 

x n exp{ zoG'"( X w ,  , 4)) 
w '  

where 

Using an integral representation for the second 8-function in (4) we find 

(4) 
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Comparing ( 6 )  with (3) one realises that by averaging over the lowest level auxiliary 
variables (Io’+ one can map the determination of (( V“)) for a hierarchy of two levels 
with p = zozl patterns on that of (( V”’)) for a hierarchy of one level with p ’ =  zI patterns. 
This renormalisation group procedure becomes particularly valuable in the analysis 
of pattern hierarchies with a number of levels tending to infinity for N + CO (Engel 1990). 

The average over the ,$$”3p’ in ( 6 )  can now be performed completely analogously 
to that over the (:o)’p and after standard manipulation (Gardner 1988) we find for the 
numerator of ( 2 )  

+g(f ,  E, K ) + - f i  G“’(M, {)I} 
N 

where 

g ( F , l ? , K ) = l n [ j c d J a  exp{ a<@ F a P J a J P - f c E u ( J a ) 2 - c ~ a J a  a a 11 
and 

We now distinguish two cases: the specialist with zo = O( N )  and zI = O( 1) and the 
universalist zo = O( 1) and z1 = O( N ) .  In the first case we find from (9) G(’)(A?, i j )  = 
z ~ G ( ~ ) ( ~ ‘ ~ ~ ) ,  4) by a saddle-point argument. Hence in both cases the prefactor of G‘” 
in (7) is O( 1) and the integrals can be calculated using the saddle-point approximation. 

We assume the saddle point to be replica symmetric which is sensible since the 
volume V is connected. The critical storage capacity C Y ,  is then given by the solution 
ofthe saddle-point equations for q = qaP, CY # p, and M = M a  in the limit q + 1 (Gardner 
1988). For zo = O( 1) and zl = O( N )  we obtain in this way (Engel 1990) 

where 

and M has to be determined from 

Here 5 Dt. . . means 5 [dt / (2~)’ / ’ ]  e- r2 /2 . .  . , 
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If zo = O( N )  and z1 = O( 1) the saddle point equation for M is to be replaced by 
one for A (cf (9)) and we find 

where 

K ‘  = (1 - m ; ) - ” ’ [ K  - mo&jo’A] 

and A is given by 

Equations (13)-(15) are exactly those found by Gardner (1988) for patterns with 
magnetisation m,. This means that if one can store p patterns with magnetisation m, 
one can also store z ,  = 0 ( 1 )  classes of patterns all containing p / z l  patterns with 
magnetisation m, irrespective of the correlations between the classes. In particular 
one finds ac+ CO for m,+ 1. This result has also been reported by Virasoro (1988) for 
the special case m,  = 0. 

The more interesting case is the universalist one described by (lo)-( 12). Performing 
the remaining averages and Gaussian integrals one finds after some algebra 

where ap(m,  K )  is the critical storage capacity for patterns with magnetisation m and 
stability K as calculated by Gardner (1988). Note that moml is the overlap between 
patterns belonging to different classes. Equation (16) shows a,+ 0 if M O - +  1 in striking 
difference to the specialist case described by (13)-(15). If one wants to store infinitely 
many classes of patterns then strong correlations within each class make a perfect 
stabilisation of all patterns very difficult. In figure 1 a,  is plotted as a function of mo 
for different values of m,. Note that a,(mo = 1, m,, K )  must be equal to z o a ~ ( m , ,  K )  > 0 
since for m = 1 one has to store simply z 1  patterns with magnetisation m,. Hence 

I 
0 0.5 1.0 

m0 

Figure 1. Critical storage capacity a, as a function of mo for m ,  = 0.2, 0.5, 0.8, 0.9, 0.95 
(from bottom to top) for a hierarchy with infinitely many classes. 
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ac(mo ,  m, ,  K )  must be discontinuous at mo= 1. This seems less strange if one keeps 
in mind that it is impossible to store perfectly two patterns which just differ by one 
bit. So patterns which are almost identical are the main problem. It is surprising that 
these complications do not occur for hierarchies with finitely many classes. 

In conclusion we have shown that the organisation of patterns in a regular two-level 
hierarchy does not improve the critical storage capacity in comparison with a ‘one-level’ 
hierarchy, i.e. patterns with magnetisation. Note that due to the additional correlations 
the information content of a two-level hierarchy with mo and m ,  is less than that of 
patterns with magnetisation mom,. Moreover since (16) is valid for all K one should 
not expect an improvement of the basins of attraction by the hierarchial organisation. 
It might be that by tolerating a small error in the retrieval (Gardner and Derrida 1988) 
one can improve a ,  significantly as in the case of the Hopfield model (Amit et al 1985) 
although this seems not very likely. Besides the study of hierarchies with infinitely 
many levels it is therefore most promising to consider irregular hierarchies of the type 
found in spin glasses (MCzard and Virasoro 1985). 

This work was begun during a stay at the Limburgs Universitaire Centrum in Diepen- 
beck (Belgium). I am deeply indebted to Professors C van den Broeck, M Bouten and 
R Serneels for their kind hospitality and many stimulating discussions. 

References 

Amit D J,  Gutfreund H and Sompolinsky H 1985 Phys. Rev. Lett. 55 1530 
- 1987 Phys. Rev. A 35 2293 
Bas S, Kiihn R and van Hemmen J L 1988 Z. Phys. B 71 261 
Cortes C, Krogh A and Hertz J A 1987 J. Phys. A :  Math. Gen. 20 4448 
Dotsenko V S 1985 J.  Phys. C: Solid State Phys. 18 L1017 
- 1986 Physica 140A 410 
Engel A 1990 Storage of hierarchically correlated patterns J. Phys. A :  Math. Gen. 23 L285 
Feigelman M V and loffe L B 1987 Int. J. Mod. Phys. B 1 51 
Gardner E 1986 J. Phys. A: Math. Gen. 19 L1047 
- 1988 J. Phys. A :  Math. Gen. 21 257 
Gardner E and Derrida B 1988 1. Phys. A :  Math. Gen. 21 271 
Gutfreund H 1988 Phys. Rev. A 37 570 
Hopfield J J 1982 Proc. Natl Acad. Sci. U S A  79 2554 
Kanter I and Sompolinsky H 1987 Phys. Rev. A 35 380 
Mtzard M, Parisi G ,  Sourlas N, Toulouse G and Virasoro M A 1984 J. Physique 45 843 
Mtzard M and Virasoro M A 1985 J .  Physique 46 1293 
Parga N and Virasoro MA 1986 J. Physique 47 1857 
Simon H 1962 Proc. Am. Phil. Soc. 106 467 
Sourlas N 1988 Europhys. Lett. 7 749 
Toulouse G, Dehaene S and Changeux J-P 1986 Proc. Naf l  Acad. Sci. U S A  83 1685 
van Hemmen J L 1987 Phys. Rev. A 36 1953 
van Hemman J L and Morgenstern I (eds) 1987 Heidelberg Coll. on Glassy Dynamics (Lecture Notes in 

Physics 275) (Berlin: Springer) 
Virasoro M A 1988 Europhys. Lett 7 293 


